Structure-Infused Copy Mechanisms for Abstractive Summarization


Seq2seq learning has produced promising results on summarization. However, in many cases, system summaries still struggle to keep the meaning of the original intact. They may miss out important words or relations that play critical roles in the syntactic structure of source sentences. In this paper, we present structure-infused copy mechanisms to facilitate copying important words and relations from the source sentence to summary sentence. The approach naturally combines source dependency structure with the copy mechanism of an abstractive sentence summarizer. Experimental results demonstrate the effectiveness of incorporating source-side syntactic information in the system, and our proposed approach compares favorably to state-of-the-art methods.

In Proceedings of the 27th International Conference on Computational Linguistics
Kaiqiang Song
Kaiqiang Song
Senior Research Scientist

Kaiqiang Song (宋凯强) is a Senior Research Scientist at Tencent AI Lab, Seattle, specializing in Natural Language Processing. His research focuses on advancing artificial intelligence through machine learning, NLP, and large language models. He is dedicated to optimizing AI model architectures for practical applications like text summarization and text generation, bridging the gap between foundational AI research and real-world impact.